Put the keystone in your Python Data Science skills by becoming proficient with Data Visualization and Modeling. This course is suited for intermediate programmers, who have some experience with NumPy and Pandas, that want to expand their skills for any career in data science. Whether you come to data science through social sciences and Statistics, or from a programming background, this course will integrate the two perspectives and offer unique insights from each.

noch 3 Tage: Entdecken Sie neue F盲higkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Data Visualization and Modeling in Python
Dieser Kurs ist Teil von Spezialisierung 蹿眉谤 Programming for Python Data Science: Principles to Practice



Dozenten: Genevieve M. Lipp
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Create professional visualizations for many kinds of data Utilize Classification algorithms to make predictions using a dataset
Kompetenzen, die Sie erwerben
- Kategorie: Statistics
- Kategorie: Data Visualization Software
- Kategorie: Predictive Modeling
- Kategorie: Pandas (Python Package)
- Kategorie: Python Programming
- Kategorie: Data Analysis
- Kategorie: Data Manipulation
- Kategorie: Scientific Visualization
- Kategorie: Machine Learning Algorithms
- Kategorie: Data Cleansing
- Kategorie: Matplotlib
- Kategorie: Predictive Analytics
- Kategorie: Data Science
- Kategorie: Regression Analysis
- Kategorie: Statistical Inference
- Kategorie: Probability & Statistics
- Kategorie: Data Visualization
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzuf眉gen
4 Aufgaben
Erfahren Sie, wie Mitarbeiter f眉hrender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverst盲ndnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 4 Module
In this module, you will learn about plotting in Python鈥攁n important technique for exploring a dataset, and an indispensable tool for communicating insights. We鈥檒l learn to make all the most common types of plots used in data science including the basics like line, bar, and scatter plots, as well as more advanced plot types including histograms and heatmaps. We鈥檒l learn both how to make these plots and how they can be customized for your needs using a core plotting library for python, matplotlib, which serves as the backbone for many python plotting tools. You鈥檒l learn how to create professional, accessible, and information-rich plots, which you will leverage to quickly identify trends in data that would be difficult to otherwise recognize. We've also included some optional additional readings if you want to further enhance your learning!
Das ist alles enthalten
1 Video30 Lekt眉ren1 Aufgabe5 Unbewertete Labore
This module, you will learn the basics of how to use code to make predictions based on data. After discussing what prediction is, you鈥檒l learn to describe the concepts that underlie predictive algorithms within the context of the K-Nearest Neighbors (KNN) algorithm for both classification and regression. Additionally, you鈥檒l learn to evaluate the accuracy of a predictive algorithm to assess its ability to generalize to new data. You will build your own KNN classification and regression algorithms from scratch and make predictions with each of them. At the end of this module, we鈥檒l have a quiz to give you the opportunity to evaluate your understanding of predictive algorithms and reflect on your experience implementing your own.
Das ist alles enthalten
1 Video7 Lekt眉ren1 Aufgabe5 Unbewertete Labore
This module, you will learn how to describe the differences between prediction and inference, two key Data Science concepts. You鈥檒l learn how to implement linear regressions 鈥 one of the most useful tools that data scientists have for inference and prediction 鈥 and other statistical models in Python. You鈥檒l apply this knowledge by examining a dataset and regressing multiple variables on each other, and describing the insights on their relationships.
Das ist alles enthalten
1 Video7 Lekt眉ren1 Aufgabe2 Unbewertete Labore
This module, you鈥檒l bring together the concepts and skills you鈥檝e developed throughout the course to create a final project for your data science portfolio. You鈥檒l recreate a now-famous data visualization that illustrates the relationship between the income of countries and their greenhouse gas emissions on a global scale. To do this, you鈥檒l explore and prepare 4 datasets and merge them into a composite dataset that you鈥檒l plot. Creating this merged dataset is an important step, and you鈥檒l validate your merged dataset with a short quiz on the insights within. The end result of this effort will be a publication-quality plot that makes a compelling point about the relationship between emissions and income鈥攁n impactful visualization that showcases your growing programming skills for data science applications.
Das ist alles enthalten
6 Lekt眉ren1 Aufgabe7 Unbewertete Labore
Erwerben Sie ein Karrierezertifikat.
F眉gen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Mehr von Data Analysis entdecken
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
- Status: Kostenloser Testzeitraum
Duke University
- Status: Kostenloser Testzeitraum
Warum entscheiden sich Menschen 蹿眉谤 糖心vlog官网观看 蹿眉谤 ihre Karriere?





Neue Karrierem枚glichkeiten mit 糖心vlog官网观看 Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universit盲ten 鈥 100聽% online
Schlie脽en Sie sich mehr als 3.400聽Unternehmen in aller Welt an, die sich 蹿眉谤 糖心vlog官网观看 for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
H盲ufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don鈥檛 give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle Unterst眉tzung verf眉gbar,