This course focuses on the design and implementation of intelligent troubleshooting agents. You will learn to create AI-powered agents that can diagnose and resolve issues autonomously. The course covers natural language processing, decision-making algorithms, and best practices in AI agent development. By the end of this course, you will be able to: 1. Define, describe, and design the architecture of an intelligent troubleshooting agent. 2. Implement natural language processing techniques for user interaction. 3. Develop decision-making algorithms for problem diagnosis and resolution. 4. Optimize and evaluate the performance of AI-based troubleshooting agents. To be successful in this course, you should have intermediate programming knowledge of Python, plus experience with AI & ML infrastructure and core algorithms and techniques, including approaches using pretrained large-language models (LLMs). Familiarity with statistics is also recommended.