This advanced machine learning and deep learning course provides a robust foundation in these transformative technologies. Starting with an overview of deep learning, you'll explore its core concepts, real-world applications, and significance in AI's evolution. Practical aspects include neural network layers, activation functions, and performance metrics in model evaluation. Through hands-on coding labs, you'll cover regression, classification, and convolutional neural networks (CNNs), building and fine-tuning models, understanding loss functions, and using optimizers for accuracy. Emphasis is on frameworks like TensorFlow and PyTorch for developing robust neural networks. The course concludes with specialized topics such as autoencoders, transfer learning, and recurrent neural networks (RNNs). Interactive labs and projects will apply knowledge to complex data analysis, time-series prediction, and creating web applications with Shiny. Ideal for data scientists, machine learning engineers, and AI enthusiasts, prerequisites include Python proficiency and basic machine learning knowledge.